MEMORANDUM FOR: Distribution FROM: W/OPS1 - John McNulty SUBJECT: Expansion of Console Replacement System (CRS) # 1. <u>Material Transmitted</u>: Engineering Handbook No. 7, Communications Equipment, Section 3.4, Modification Note 34, Revision B, Errata 1 Console Replacement System Output Channel Expansion (Typical 4 to Large 5). ### 2. <u>Summary</u>: Requests for Change AA484 and AA605 authorize CRS expansion for Weather Forecast Office (WFO) Rapid City, SD (UNR) and WFO Midland, TX (MAF). # 3. <u>Effect on Other Instructions</u>: Incorporated changes in the procedure are due to upgrades in software for the specific site. ### Distribution: | W/OPS13 - TRL | W/WFO - CYS - L. Turner | |-------------------------|----------------------------| | W/OPS13 - J. Sabel | W/WFO - UNR - P. Michael | | W/OPS13 - M. Brown | W/SR41x5 - S. Baker | | W/OPS16 - A. Morris | W/WFO - FFC - B. Brodnax | | W/OPS23 - J. Nathan | W/WFO - LIX - L. Tennison | | W/OS612 - B. Ryman | W/WFO - LUB - P. Shideler | | W/CR41x4 - R. Devoe | W/WFO - TBW - N. Jester | | W/WFO - PAH - D. Duncan | W/WFO - EWX - T. Hempen | | W/WFO - MPX - R. Julian | W/WFO - MAF - W. Patterson | | W/WFO - IND - J. Reed | | COMMUNICATIONS EQUIPMENT MODIFICATION NOTE 34 REVISION B, ERRATA 1 (for Electronics Technicians) Maintenance, Logistics, and Acquisition Division W/OPS12: GSS SUBJECT : Console Replacement System (CRS) Output Channel Expansion PURPOSE : To expand the capabilities of the CRS system from a Typical 4-channel to a Large 5-channel configuration. SITES : <u>Site Name</u> <u>SID</u> <u>Org. Code</u> AFFECTED WFO Rapid City, SD UNR WR9662 WFO Midland, TX MAF WP9265 EQUIPMENT : CRS (B440) AFFECTED PARTS REQUIRED : The parts required will be issued to each site by W/OPS12 from the National Logistics Support Center under the applicable approved site-specific Request for Change. (1) Front-end processor (FEP) hold-down strap (ASN: B440-STRAP) (1) FEP computer (ASN: B440-2A2) (1) FEP hard disk drive (HDD) (ASN: B440-2A2A8-FEP) (1) Local area network (LAN) board (ASN: B440-1A8A10) (1) LAN cable segment (ASN: B440-2W1)(1) BNC tee connector (ASN: B440-4J1) (1) FEP switch VGA video cable (ASN: B440-2W3)(1) FEP switch PS/2 keyboard cable (ASN: B440-2W4) (1) DECtalk card (ASN: B440-2A2A11) (2) Audio switch module (ASM) cards (ASN: B440-2A6A3) (2) DECtalk-ASM audio cable (ASN: B440-4W12) (1) NOAA Weather Radio Specific Area Message Encoder (NWRSAME)-audio control panel (ACP) interface cable (ASN: B440-1A5W4) (1) DOS formatted diskette with CRS test database ASCII files (provided by W/OPS12) PARTS SUPPLIED BY THE SITE The following parts are to be provided by the site: (1) Transmitter audio output cable (1) NWRSAME, if available Cable marking tags and tie-wraps, as needed 03/05/02 TOOLS AND TEST EQUIPMENT REQUIRED #1 and #2 Phillips screwdrivers CRS test database ASCII files diskette provided by W/OPS12 (see Parts Required) Small flat-blade jeweler's screwdriver Root mean square (RMS) voltmeter/dB meter 600-ohm dummy load with a RJ-11 plug attached Anti-static workstation kit TIME REQUIRED : 3 Hours EFFECT ON OTHER : Modification Note 34, Revision B, Errata 1 is issued to provide add an INSTRUCTIONS additional/modified site to Modification Note 34, Revision B of the Console Replacement System Output Channel Expansion (Typical 4 to Large 5). AUTHORIZATION : The authorizations for this modification are Request for Change AA484 and AA 605. VERIFICATION STATEMENT This procedure has been verified at National Weather Service Headquarters (WSH) Silver Spring, MD (SLVM2). GENERAL : The attachments to this procedure provide the instructions to add output channel(s) to the CRS. PROCEDURE : Attachment **A** provides procedures for implementing this modification. $\label{eq:attachment} \textbf{B} \ (\text{CRS Hardware Drawings}) \ \text{provides reference information}.$ Attachment **C** provides verification of the new physical configuration (used before applying power). Attachment **D** provides a completed sample of a WS Form A-26, Maintenance Record. # REPORTING INSTRUCTIONS Report the completed modification on a WS Form A-26 according to the instructions in Engineering Handbook No. 4 (EHB-4), Engineering Management Reporting System (EMRS), Part 2, Appendix I. Include the following information on the WS Form A-26: - a. An equipment code of **CRSSA** in block 7. - b. A serial number of **001** in block 8. - c. The **ASN** and **NSN** of the FEP in block 13. - d. The modification number of **34B** in block 17a. - e. Serial number for the FEP in block 18. A sample WS Form A-26 is provided as attachment **D**. John McNulty Chief, Maintenance, Logistics, and Acquisition Division Attachment A - Modification Procedure Attachment **B** - CRS Hardware Drawings Attachment **C** - New Configuration Physical Verification Procedure Attachment **D** - WS Form A-26 Sample Revision B, Errata 1 EHB-7 Issuance 02-07 3 03/05/02 # Attachment A Modification Procedure # Attachment A Modification Procedure ### Overview This modification note provides instructions for expanding a Console Replacement System (CRS) from a TYPICAL 4-channel configuration to a LARGE 5-channel configuration. The modification procedure contains seven parts: - 1. CRS Power-Down Procedures - 2. Equipment Upgrade Procedures - 3. CRS Power-Up Procedures - 4. CRS Login and Test Database ASCII File Loading Procedures - 5. Post Hardware Expansion Channel Operability Verification Procedures - 6. Adding New Transmitter Channels and Editing Site Database ASCII File Procedures - 7. ASM Alignment Procedures NOTE: - 1. Read the entire procedure, and verify receipt of all required parts before proceeding with the actual modification. - 2. Coordinate with the operations staff before performing this procedure. CAUTION CRS must be down to perform the expansion modification. This modification contains test messages that should not be broadcast on any transmitter. In addition, the site database ASCII file will be recompiled, and all dictionary files will be lost! Switch to the backup NWR system, and ensure the dictionary files are backed up (see the CRS Systems Administration Manual) before performing this modification. NOTE: 3. The new FEP setup procedures in part 2, sections 2.1, 2.2, and 2.3, can be performed prior to shutting down the system. This will save downtime of a CRS system that is currently operational. A-1 # PART 1-CRS POWER-DOWN PROCEDURES - 1.1 CRS Application Shutdown Procedure - 1. Click on the **System** menu and click on **Stop System**. - 2. Wait until all icons on the CRS System Status menu turn red. ### 1.2 UNIX Shutdown Procedure ### NOTE: - The shutdown of the CRS application is just one task before the graceful power-down. After stopping the CRS application software, implement a "controlled/orderly UNIX shutdown with NO automatic reboot" on the main processor (MP), and implement a "controlled/orderly UNIX shutdown" on all FEPs. Upon completion of the controlled/orderly UNIX shutdown, power-down the processors in the following order: MPs first followed by the FEPs. - 1. Click on the **Maintenance** menu in the main CRS menu to access the *Maintenance* pull-down menu. - 2. Click on **UNIX Shell** in the *Maintenance* pull-down menu. A *UNIX xterm* window pops up for the entry of UNIX commands. - 3. Type the following UNIX command in the *xterm* window: #### su root - 4. Press the **Enter** key. The shell responds with a prompt to enter root passwords. - 5. Type the password for the root. - 6. Press the **Enter** key. The shell prompt changes to a pound sign indicating that all subsequent UNIX command entries have root authority. - 7. Type the following UNIX command in the *xterm* window: ### rsh 5MP /sbin/shutdown -i0 -g0 -y - 8. Press the **Enter** key. The shell command prompt returns after displaying a confirmation of shutdown initiation on 5MP. UNIX on processor 5MP shuts down. - 9. Type the following UNIX command in the *xterm* window: # rsh 1FEP /sbin/shutdown -i0 -g0 -y - 10. Press the **Enter** key. The shell command prompt returns after displaying a confirmation of shutdown initiation on 1FEP. UNIX on processor 1FEP shuts down. - 11. Type the following UNIX command in the *xterm* window: # rsh 4BKUP /sbin/shutdown -i0 -g0 -y - Press the **Enter** key. The shell command prompt returns after displaying a confirmation of shutdown initiation on 4BKUP. The UNIX on processor 4BKUP shuts down. - 13. Type the following UNIX commands in the *xterm* window: cd/ - 14. Press the **Enter** key. - 15. Type the following UNIX commands in the *xterm* window: /sbin/shutdown -i0 -g0 -y 16. Press the **Enter** key. Each CRS processor for the system may be safely powered-down when UNIX indicates shutdown is complete with the following message: Press any key to reboot... NOTE: 2. Do not reboot any machine; go to step 1.3. 1.3 CRS Hardware Power-down Procedure Power-down all CRS equipment at the operator's station and in the equipment room by turning off the following equipment: **Operators Station Equipment Room** 0MP and Monitor 4BKUP 5MP and Monitor 1FEP NWRSAME (all) LAN Bridge > LAN Server Monitor Printer Modem Audio switching assembly (ASA) power supplies EHB-7 Revision B, Errata 1 Issuance 02-07 03/05/02 ### PART 2-EQUIPMENT UPGRADE PROCEDURES 2.1 New 2FEP LAN Board and Hard Drive Installation Procedures **NOTE:** Removing and replacing circuit cards must be accomplished in an anti-static work area using approved anti-static procedures. - 1. Remove the right side cover of the new 2FEP using the following procedure: - a. Remove the right three screws located on the back of the system unit (see attachment **B**, figure A-1). These screws secure the right side access panel of the system to the chassis. - b. Pull the panel backward while lifting it upward. - 2. Remove the screws holding expansion slot covers 1 through 3 and 6 (see attachment **B**, figure A-13), and retain the screws for use in 1FEP and 4BKUP (see section 2.4, step 5). - 3. Remove and retain the expansion slot covers for use in 1FEP and 4BKUP (see section 2.4, step 5). - 4. Install the new LAN card (ASN: B440-1A8A10) in expansion slot number 1, and reinstall a retaining screw. # 2.2 Installation of the HDD and Cage Combination Procedure - 1. Align the three slides on the HDD cage with the three slots on the upper left corner of the chassis. - 2. Insert the slides into the slots holding the HDD cage at an angle away from the chassis. - 3. Slide the HDD cage towards the bottom of the chassis, and swing the HDD cage into the chassis body. - 4. Align the two screw slots at the top with the threaded holes in the chassis, and secure the HDD cage with two screws. - 5. Secure the HDD cage with a single screw at the tab located at the lower right corner of the HDD cage (see attachment **B**, figure A-13). - 6. Hook up the HDD cable to the HDD. Cable connectors are keyed and only fit one way. Connect the other end of the HDD cable to the SCSI connector on 2FEP motherboard. - 7. Connect a power connector from the power supply to the HDD. # 2.3 2FEP DECtalk Card Input/Output (I/O) Address Configuration Procedure NOTE: - 1. Depending on the CRS site configuration, there may be as many as five DECtalk cards per FEP. DECtalk cards are identified as module numbers 0, 1, 2, 3, and 4. - 1. Configure the new DECtalk card (ASN: B440-2A2A11) for the appropriate I/O address, through switch 2 (SW2) as defined in table 1 and pictured in attachment **B**, figure A-11. **Table 1.** DECtalk Card Switch 2 (SW2) Settings | Module # | sw | 2-1 SW | 2-2 SW | 2-3 SW | I/O Address | PC Slot | | | |----------|-----|--------|--------|--------|-------------|---------|-----|---| | 0 | off | off | off | on | off | off | 240 | 2 | | 1 | off | on | off | on | off | off | 250 | 3 | | 2 | on | off | on | off | off | on | 328 | 4 | | 3 | off | off | on | on | off | on | 360 | 5 | | 4 | off | off | off | off | on | on | 380 | 6 | NOTE: - 2. Regardless of FEP, DECtalk card configuration remains constant, meaning modules 0, 1, 2, 3, and 4 are configured the same for each FEP. - 2. Use table 1 to set up a DECtalk card with the I/O address: 240 Install the DECtalk card into slot 2 of the new 2FEP. NOTE: 3. Perform Part 1, CRS Power-Down Procedure before proceeding. ### 2.4 1FEP and 4BKUP DECtalk Card Removal Procedure NOTE: - 1. Removing and replacing circuit cards must be accomplished in an anti-static work area using approved anti-static procedures. - 1. Remove all cabling from 1FEP and 4BKUP and remove 1FEP and 4BKUP from the equipment rack to the anti-static work area (see attachment **B**, figure A-5). - 2. Remove the DECtalk cards from slot 5 of both the 1FEP and 4BKUP units using the following procedure: Revision B, Errata 1 EHB-7 Issuance 02-07 03/05/02 - a. Access the DECtalk cards by removing the right three screws located on the back of the system unit. These screws secure the right side access panel of the system to the chassis (see attachment **B**, figure A-1). - b. Pull the panel backward and lift upward. - 3. Remove the screw that holds the DECtalk card in place. - 4. Carefully remove the DECtalk card from the expansion slot by placing your hands on the right and left edges of the card and pulling the card up out of the chassis. **NOTE:** 2. These two DECtalk cards will be placed in the new 2FEP. - 5. Place one of the expansion slot covers removed from the new 2FEP in 1FEP and 4BKUP at expansion slot 5, using one of the removed screws. - 6. Replace 1FEP and 4BKUP right side covers using the reverse procedure in section 2.4, step 2. - 7. Replace 1FEP and 4BKUP in the CRS main unit cabinet. - 8. Reconnect all cabling to 1FEP and 4BKUP with the exception of the DECtalk to ASM audio cables. # 2.5 2FEP DECtalk Card I/O Address Configuration Procedure NOTE: 1. Depending on the Cl - 1. Depending on the CRS site configuration, there may be as many as five DECtalk cards per FEP. DECtalk cards are identified as module numbers 0, 1, 2, 3, and 4. - 1. Configure each DECtalk card removed in section 2.4 (ASN: B440-2A2A11) for the appropriate I/O address, through Switch 2 (SW2) as defined in table 2 and pictured in attachment **B**, figure A-11. Table 2. DECtalk Card Switch 2 (SW2) Settings | Module # | SW2 | 2-1 SW2 | 2-2 SW2 | 2-3 SW | 2-4 SW2- | 5 SW2-6 | I/O Address | PC Slot | |----------|-----|---------|---------|--------|----------|---------|-------------|---------| | 0 | off | off | off | on | off | off | 240 | 2 | | 1 | off | on | off | on | off | off | 250 | 3 | | 2 | on | off | on | off | off | on | 328 | 4 | | 3 | off | off | on | on | off | on | 360 | 5 | | 4 | off | off | off | off | on | on | 380 | 6 | ### NOTE: - 2. Regardless of FEP, DECtalk card configuration remains constant, meaning modules 0, 1, 2, 3, and 4 are configured the same for each FEP. - 2. Use table 2 to set up a DECtalk card with the I/O address: 250 Install the DECtalk card into slot 3 of the new 2FEP. - 3. Use table 2 to set up a DECtalk card with the I/O address: 380 Install the DECtalk card into slot 6 of the new 2FEP. - 4. Replace the 2FEP cover removed using the reverse procedure in section 2.1, step 1. # 2.6 2FEP Computer Installation Procedure - 1. Install 2FEP in the CRS main unit cabinet. - 2. Install the new FEP switch VGA video cable (ASN: B440-2W3) between 2FEP video out and switch position B). - 3. Install the new FEP switch PS/2 keyboard cable (ASN: B440-2W4) between 2FEP keyboard connection and switch position B. - 4. Install the new LAN cable segment (ASN: B440-2W1) and BNC tee (ASN: B440-4J1) connector to connect the 2FEP PC into the existing CRS LAN (2FEP shall be connected between 4BKUP and 5MP). (See attachment B, figure A-15). # 2.7 ASM Card Installation Procedure 1. Remove ASA slot 5 and PB2 covers by removing the two screws. NOTE: There are five jumpers to be set on each ASM card. > Take one of the new ASM cards (ASN: B440-2A6A3) and set the jumpers for 2. slot 5 of the ASA in accordance with table 3. EHB-7 Revision B, Errata 1 A-7 **Table 3.** ASM Card Jumper Settings | | ASA
Slot # | Silence Alarm
Jumper "JP1" | ACP Channel
Sel. Jumper
"JP2" & "JP3" | BKUP Live/
Playback Cntrl
Jumper "JP4" | FEP
Select
Jumper
"JP5" | |----------------------------------|---------------|-------------------------------|---|--|----------------------------------| | ASM 1
(channel 1) | 1 | EN
(Enable) | 1 | BUL2 | FEP1 | | ASM 2
(channel 2) | 2 | EN
(Enable) | 2 | BUL2 | FEP1 | | ASM 3
(channel 3) | 3 | EN
(Enable) | 3 | BUL2 | FEP1 | | ASM 4
(channel 4) | 4 | EN
(Enable) | 4 | BUL2 | FEP2 | | ASM 5 (channel 5) | 5 | EN
(Enable) | 5 | BUL2 | FEP2 | | ASM PB1
(mon/playback chan 1) | PB1 | DIS
(Disable) | PB1 | РВ | FEP1 | | ASM PB2
(mon/playback chan 2) | PB2 | DIS
(Disable) | PB2 | РВ | FEP2 | - 3. Install the new ASM card into slot 5 of the ASA chassis, and tighten the two screws. - 4. Using table 3, repeat steps 2 and 3 for the new ASM card in slot PB2 and the existing ASM card in slot 4. - 2.8 Operational and Spare ASC Jumper Setting and Cable Installation Procedure - 1. Disconnect five DECtalk-ASC audio cables (labeled as 4-1, 4-2, 4-3, 4-4, and 4-5). - 2. Disconnect the two ACP-ASC audio cables. - 3. Disconnect the ASC-4BKUP parallel port interface cables. - 4. Disconnect the two ACP-ASC control cables. - 5. Loosen the four front panel screws and extract the ASC card. - 6. On both the operational and spare ASC, set the backup channel configuration using the seven jumpers on JP1. Using all seven jumpers, move the jumpers to the side of the block that lists the number of output channels for your site configuration; the center row of pins being common. Example: using figure 1, as a reference, if your site configuration had 5, 6, 9, or 10 channels, each jumper would connect from the center row of pins to the top row of pins. If your site configuration had 1, 2, 3, 4, 7, 8, 11, 12, or 13 channels, each jumper would connect from the center row of pins to the bottom row of pins. Figure 1. ASM Card Jumper Block - 7. Insert the ASC back into the ASA and tighten the four front panel screws. - 8. Reconnect the two ACP-ASC control cables. - 9. Reconnect the ASC-4BKUP parallel port interface cable. - 10. Reconnect the two ACP-ASC audio cables. - 11. Reconnect existing DECtalk-ASC audio cables on 4BKUP in accordance with table 4 with the exception of the unused cable labeled 4-4. Tie the unused cable back with tie-wraps. Table 4. DECtalk to ASC Audio Cables | From | То | Cable
Label | |---------------------------|-------------------------|----------------| | 4BKUP DECtalk 1 "J2" Port | ASC "BKUP Audio 1" Port | 4-1 | | 4BKUP DECtalk 2 "J2" Port | ASC "BKUP Audio 2" Port | 4-2 | | 4BKUP DECtalk 3 "J2" Port | ASC "BKUP Audio 3" Port | 4-3 | | 4BKUP DECtalk 5 "J2" Port | ASC "BKUP Audio 5" Port | 4-5 | Ensure the unused DECtalk-ASC cable 4-4 is not connected to any ASC ports. ### 2.9 DECtalk-ASM Audio Cable Installation Procedure 1. Using write-on cable labels, mark and connect the new DECtalk-ASM audio cables in accordance with table 5. Table 5. DECtalk to ASM Audio Cables | From | То | Cable
Label | |--------------------------|-------------------|----------------| | 1FEP DECtalk 1 "J2" Port | ASM 1 "IN Port" | 1-1 | | 1FEP DECtalk 2 "J2" Port | ASM 2 "IN Port" | 1-2 | | 1FEP DECtalk 3 "J2" Port | ASM 3 "IN Port" | 1-3 | | 2FEP DECtalk 1 "J2" Port | ASM 4 "IN Port" | 2-1 | | 2FEP DECtalk 2 "J2" Port | ASM 5 "IN Port" | 2-2 | | 1FEP DECtalk 5 "J2" Port | ASM PB1 "IN Port" | 1-5 | | 2FEP DECtalk 5 "J2" Port | ASM PB2 "IN Port" | 2-5 | 2. Connect and relabel the new and existing DECtalk-ASM audio cables on 1FEP and the new 2FEP in accordance with table 5 with the exception of the unused slot 5 DECtalk-ASM cable labeled 1-4. Tie the unused cable back with tie-wraps. # Ensure the unused DECtalk-ASM cable 1-4 is not connected to any ASM ports. - 2.10 New Transmitter Audio Output Cable Installation Procedure - 1. Connect the OUT 1 port of the new ASM card at slot 5 of the ASA chassis by installing the new audio output cable to the demarc panel position for the new transmitter. - 2. Install the new NWRSAMEs (if available) to the top panel of the 5MP workstation. - 3. Install the NWRSAME-ACP interface cable from the NWRSAME rear connector to the "NWRSAME INPUT socket 1" port of ACP2 rear panel (this connects to pins 2, 6, 7, 9, and 10 of the NWRSAME) (if available). **NOTE:** This completes the hardware modification. ### PART 3-CRS POWER-UP PROCEDURES ### ***WARNING*** Prior to powering-up the FEPs, perform the New Configuration Physical Verification procedure contained in attachment C to verify proper system configuration. Failure to perform the procedure, can result in transmitter broadcasts assigned to incorrect output channels. # 3.1 Power-up FEP Procedure Press the **ON/OFF** switch (on the front center right of the enclosure) to power-up the FEPs. A green power LED on each FEP lights when the power is on. The FEPs can be powered-up in any sequence. The FEPs go through a memory check, display the system configuration [as recognized by the basic I/O system (BIOS)], then boot the embedded operating system. At the completion of the boot process, the console screen displays the prompt, Console Login:. The embedded operating system automatically initializes to a pre-set level and then waits for final start-up commands from the master MP. NOTE: The FEPs share a common console through the Shared Monitor Switch. The console displays messages while completing the boot process of the FEP currently switched in. 2. Use the Shared Monitor Switch to select the next FEP. The console monitor displays: Press <F1> to resume, <F2> to Setup. 3. Press **F1** to complete the boot process. The prompt displays: ### **Console Login:** - 4. Repeat for each remaining FEP. - 3.2 Power-Up Main Processors Procedure. NOTE: 1. Power-up 0MP as the master main processor and 5MP as the shadowing processor. Press the **ON/OFF** switch (on the front center right of the enclosure) to power-up the MPs. A green power LED on each MP lights when the power is on. The MPs can be powered-up in any sequence. The MPs go through a memory check, file system check, EHB-7 Revision B, Errata 1 Issuance 02-07 A-11 03/05/02 system configuration verification (as recognized by the BIOS), and then boot the embedded UNIX operating system. At the completion of the boot process, the workstation screen displays the *CRS Login* screen. The MPs are now ready for the initialization of the CRS application software. #### NOTE: - 2. For Build 6.4 and higher: Following power-up, CRS displays the *Security Screen*. The operator must acknowledge the *Security Screen* by clicking on the **Acknowledge** button to continue the login process. - 3. Whenever the MPs are powered-up, they automatically step through the boot process to the multiuser mode without operator intervention. ### 3.3 CRS Application Software Installation on the New FEP Procedure - If the 0MP was rebooted, at the Login GUI window, login as the root user. Click the KDE Desktop Application Starter icon (the big K Wheel icon) in the lower left part of the KDE Desktop panel. If the 0MP was not rebooted, proceed to step 2. - 2. Click on the **SCO Control Center** pop-up menu selection. # NOTE: - 1. You may also start the SCO Control Center by clicking on the SCO Admin icon on the KDE Desktop panel (the Swiss Army Knife icon). - 3. Select and double-click on the **Software_Management** menu selection. - 4. Double-click the **Applications Installer** menu selection. - 5. Insert the CD-ROM into the CD drive of the selected installation MP, then select **CD-ROM_1** from the pop-up menu, following the *Install from:* prompt in the upper half of the *Application Installer* window. - 6. After the CRS application package icons (**crsopsais**, **crsopsfpm**, and **crsopsmpm**) are displayed immediately below the *Install from* prompt, select **crsopsais**, and click on **Install** (Note: **crsopsfpm** and **crsopsmpm** can only by installed indirectly through **crsopsais**). - 7. Respond to the prompts displayed in the **Add Application: crsopsais** and **auto install** terminal windows. ### NOTE: The Add Application: crsopsais window and the auto_install window are used to display the installation activity log, as well as the prompts to the installation operator. The log information and the prompt sequences vary, depending on the responses to the prompts. 8. When the installation process completes, the CRS displays the following: NOTE: 3. Shutting down the installation MP [0MP I 5MP] is an option. It is not necessary to shutdown after the software is installed on an FEP. A shutdown is RECOMMENDED after CRS software is installed on an MP to ensure the synchronized as CRS master and CRS shadow. Continue 0MP shutdown? (default: y) 9. Press **Enter** to continue. NOTE: - 2. For Build 6.4 and higher: Following power-up, CRS displays the *Security Screen*. To display the *Login* screen and continue the login process, click the **Acknowledge** button. - 10. The FEP physically connected through the Shared Monitor Switch starts itself automatically following shutdown. To complete the startup sequence for the remaining FEPs, use the *Shared Monitor* switch on the equipment rack to select the next FEP for rebooting. The console monitor displays: Press <F1> to resume, <F2> to Setup. 11. Press **F1** to complete the boot process. The prompt displays: **Console Login:** 12. Repeat for each remaining FEP. # PART 4–CRS LOGIN, APPLICATION SOFTWARE ERROR VERIFICATION, AND TEST DATABASE ASCII FILE LOADING PROCEDURES # 4.1 CRS Login Procedure # NOTE: NOTE: - For Build 6.4 and higher: Following power-up, CRS displays the Security Screen. The operator must acknowledge the Security Screen by clicking on the Acknowledge button to continue the login process. - 2. The *CRS Login Screen* allows you to log onto CRS. This screen contains two fields: *Login ID* and *Password*. The fields are provided to allow you to type in your assigned login ID and password. - 1. Type **admin** (for system administrator) in the *Login ID* field, and press **Enter**. The cursor moves to the *Password* field. - 2. Type in your assigned password and press **Enter** to complete the CRS login process. The system displays the *CRS Main* display. In addition, the system displays the following error message: - System is not operational. Perform 'Start CRS' to start system. 3. The error message is only a status message indicating CRS is not running. 3. Click on **OK** to clear the message. 4.2 CRS Applications Software Installation Error Verification Procedure - 1. Open a UNIX Shell: - a. Click on Maintenance. - b. Click on UNIX Shell. - 2. Type **grep ERROR /crs/install.log** and press **Enter**. - 3. Ensure there are no error messages. Any error messages must be reported to the CRS Site Support Staff at 301-713-0191 x145 or x144. - 4. Type **grep WARNING /crs/install.log** and press **Enter**. - 5. Ensure there are no error messages. Any error messages must be reported to the CRS Site Support Staff at 301-713-0191 x145 or x144. **NOTE:** Ignore any IP address error messages. ### 4.3 CRS Test Database ASCII File Loading Procedure NOTE: - 1. The following instructions for loading the CRS test database ASCII file assume everything is being done with 0MP set as the MP. - 1. Place the diskette with CRS test database ASCII files in the 0MP diskette drive to copy the desired file from the diskette to CRS. - a. Type mdir a: and press the Enter key to display a directory listing of the files on the test database diskette. There are 13 files on the diskette with the following filename convention: TYPW_CFG.ASC where W = 1 - 4LRGX_CFG.ASC where X = 5 - 8MAX Y_CFG.ASC where Y = 9MAXZ CF.ASC where Z = 10 - 13 (W, X, Y, and Z represent the number of transmitters supported by your CRS) - b. Locate the applicable test database ASCII file. - c. Type **mcopy -t** a: *filename |crs/data/SS/filename* (where *filename* is the name of the CRS test database ASCII file to be used). - d. Press the **Enter** key. - Click and hold the left mouse button on any white space, move the cursor to select XCRS_SITE Utility, and release the button to bring up the XCRS_SITE Utility window. - 3. Click on the **Select ASCII Site Setup** button to bring up the list of ASCII files. - 4. Select the desired database ASCII filename copied from the diskette in section 4.3, step 1.c, and double click. NOTE: - 3. The directory selection block has a default directory name of /crs/data/SS, and the file filter block has a default file name of /crs/data/SS/*.ASC. If the desired filename does not appear, it may have copied to the wrong directory in section 4.3, step 1.c. If that is the case, change the default directory name to the directory specified in section 4.3, step 1.c. The other reason the filename does not appear is because it is being filtered out. Remember, UNIX is case sensitive and if copied with an asc extension in lower case it does not display. Change the filter file name to /crs/data/SS/*.asc, and the filename displays. - 5. Select *Initialize System Configuration and Database* to ensure the entire system database and configuration is erased and replaced. Revision B, Errata 1 EHB-7 Issuance 02-07 03/05/02 6. Click on the **Start Site Configuration** button. The system displays: # Will now perform FULL site reconfiguration. Continue? 7. Click on **OK**. The "wristwatch" and the "working" message display. Several messages scroll by. The last message reads: ### Finished with site configure The "wristwatch" and "working" message disappear. Ensure there are no error messages at the completion of the site configuration process. 8. Restart CRS by clicking on **Start CRS System**. The system displays: # The CRS system will be STARTED. Continue? - 9. Click on **OK**. The "wristwatch" and the "working" message display. Several messages scroll by. The last message refers to starting 4BKUP. The "wristwatch" and "working" message disappear. - 10. Click on **EXIT** to close the *XCRS SITE Utility* window. - 11. Click on the UNIX shell window to select it. At the prompt type **exit** and press **Enter** to close the UNIX Shell. - 12. Open the *System Status* window. - a. Click on **System**. - b. Click on **System Status**. - 13. Monitor the *System Status* window and ensure the system is operational. # PART 5-POST HARDWARE EXPANSION CHANNEL OPERABILITY VERIFICATION **PROCEDURES** 5.1 Channel Operability Verification Procedure NOTE: CRS test database ASCII files contain test messages configured for continuous broadcast for channel operability verification. - 1. Connect a monitor speaker or headphones to the ACP. - 2. Using the Channel Select control, select each channel, one at a time, and monitor the output for the correct message (i.e., With Channel one selected, the message output is: This is transmitter one, audio switch module one.). ### 5.2 FEP Backup Mode Channel Operability Verification Procedure - 1. Click on Maintenance. - 2. Click on Front-End Processor Switch. - 3. Select 1 in the Front-End Processor Switch window under FEP. - 4. Select Out under Switch. - 5. Select **Yes** under *Backup* - 6. Click on the **Save the current record** icon to execute the FEP switch process. The *Question* box displays: ### Switch out the FEP FULLY offline ??? 7. Click on **OK** to continue. The system displays the "wristwatch" and the message: ### "Requesting FEP Switchout". - 8. Monitor the FEP1 and BKUP System Status icons and verify FEP1 is in backup mode and the BKUP icon displays the online status. - 9. Upon completion of the FEP switch process, repeat section 5.1, steps 1 and 2. - 10. Upon completion of the FEP backup mode channel operability verification, perform the following to display the Front-End Processor Switch window: - a. Click on Maintenance. - b. Click on Front-End Processor Switch. - 11. In the Front-End Processor Switch window under FEP: select 1. - Under Switch: select IN to switch FEP1 back in. 12. EHB-7 Revision B, Errata 1 Issuance 02-07 03/05/02 13. Click on the **Save the current record** icon to execute the FEP switch process. The system displays the "wristwatch" and the message: ### Requesting FEP switch-in.... - 14. Monitor the FEP1 and BKUP System Status icons and verify FEP1 is online and the BKUP icon displays the backup mode status. - 15. When the system returns to normal operation, perform the following steps to close the *Front-End Processor Switch* window and stop CRS: - a. On the Front-End Processor Switch window: - 1) Click on File. - 2) Click on Exit. - b. On the Main CRS menu: - 1) Click on System. - 2) Click on Stop System. - 3) Click on OK. - 4) Click on Close. - 16. Monitor the System Status window, and verify the CRS application has stopped. # PART 6-ADDING NEW TRANSMITTER CHANNELS AND EDITING SITE DATABASE ASCII FILE PROCEDURES - 6.1 Adding New Transmitter Channels Procedure - 1. Click and hold the left mouse button on any white space, move the cursor to select **XCRS_SITE Utility**, and release the button to bring up the *XCRS_SITE Utility* window. - 2. Click on **Select ASCII Site Setup** button to bring up the list of ASCII files. - 3. Select the current site database ASCII file and double click. - 4. Click on **Add Transmitter(s)** button to start the **addxmt** program. It displays the number of transmitters currently available, the next available transmitter to be added, and its appropriate processor and slot. - 5. Use the following steps to add a new transmitter to the Site Database ASCII file: - a. Mnemonic - 1) Type option number 1 and press **Enter** to select *Mnemonic*. - 2) Type **a** and press **Enter** at the program prompt to add the *Mnemonic*. - 3) Type **mmmmm** and press **Enter** (where mmmmm is the desired *Mnemonic*), up to a length of 5 characters. The program returns the *Mnemonic*. - 4) Type **0** or press **Tab** and press **Enter** to complete the *Mnemonic* selection. # b. Call Sign - 1) Type option number 2 and press Enter to select Call Sign. - 2) Type **a** and press **Enter** at the program prompt to add the *Call Sign*. - 3) Enter the Call Sign in the same manner as the Mnemonic, up to a length of 5 characters. The program returns the *Call Sign*. - 4) Type **0** or press **Tab** and press **Enter** to complete the *Call Sign* selection. # c. Frequency - 1) Type option number **3** and press **Enter** to select *Frequency*. The *Frequency* option only allows a selection of one of the seven choices listed. - 2) Type **n** and press **Enter** (where n is the desired *Frequency* choice). The program returns the *Frequency* choice by displaying an asterisk next to the *Frequency* selection. - 3) Type **0** or press **Tab** and press **Enter** to complete the *Frequency* selection. ### d. Location - 1) Type option number **4** and press **Enter** to select *Location*. - 2) Type **a** and press **Enter** at the program prompt to add the *Location*. - 3) Enter the *Location* (in the same manner as the *Mnemonic* and the *Call Sign*) up to a length of 40 ASCII characters. The program returns the *Location*. - 4) Type **0** or press **Tab** and press **Enter** to complete the *Location* selection. ### e. Add Transmitter - Type option number 5 and press Enter to use all the parameters defined in the first four steps to configure a new transmitter in the database ASCII file. The program verifies a new transmitter is needed. - 2) Type **y** and press **Enter**. The program returns the assignment of each channel to its proper processor and slot. The program tells you the appropriate database ASCII file has been updated and the original has been saved with the .SAV extension. 6. The program then asks if another channel is needed. If an additional channel is needed, repeat steps 5 **a** through **e** for the next new transmitter. If not, type **n** and press **Enter** to exit the program. # 6.2 Editing the Site Database ASCII File Procedure 1. When exit **addxmt** is done, the *Question* box displays: # Ready to recompile selected ASCII file. Continue? - 2. Click on **Cancel** to close the *Question* box. - 3. Select *Initialize System Configuration and Database* to ensure the entire system database and configuration is erased and replaced. - 4. Click on **Start Site Configure**. The *Question* box displays: # Will now perform FULL site reconfiguration. Continue? 5. Click on **OK** to recompile the database ASCII file. Upon completion of the database ASCII file recompile process, the system displays: Finished with site configure. 6. Restart CRS by clicking on **Start CRS System**. The system displays: # The CRS system will be STARTED. Continue? - 7. Click on **OK**. The "wristwatch" and the "working" message display. Several messages scroll by. The last message refers to starting 4BKUP, and the "wristwatch" and "working" message disappear. - 8. Click on **Exit** to close the *XCRS_SITE Utility* window. - 9. Open the *Alert Monitor* window: - a. Click on **System**. - b. Click on Alert Monitor. # **NOTE:** No attempt is made by **addxmt** to establish station identifiers, broadcast programs, broadcast suites, message types, voice parameters, keep-alive messages, interrupt messages, etc., for the new transmitters. These must be configured through the CRS graphical user interface (see the *CRS Site Operator's Manual*) and updated in the site database ASCII file. # **PART 7-ASM ALIGNMENT PROCEDURES** NOTE: The output of each added ASM card must be aligned before placing in service. The alignments must be performed in the following sequence: - 1. Verify ACP **Ref.** Mark Alignment. - 2. ASM Card Alignment. ### 7.1 Verify ACP Ref. Mark Alignment Procedure NOTE: - 1. The ACP Ref. mark alignment can be performed independently and does not require the use of any tool or equipment. - 2. Transmitter x in this procedure refers to the channel under test. - 1. Set up the CRS for BUL (buildup live). No system database is required. - 2. Set the index mark on the **tone volume control** knob to the *Ref.* position. - 3. Push the **Transmitter x** and **Enable** buttons in sequence to start BUL on channel x. The buttons are located in the **BACKUP LIVE** block area on the ACP front panel. NOTE: - 3. Do not send audio to a transmitter while performing this procedure. - 4. Push the **Alert Tone 1** button to generate the 1050 Hz warning alert tone (WAT). - 5. Ensure the VU meter on the ACP front panel indicates **0 dBm**. NOTE: - 4. The duration of 1050 Hz WAT is 10 seconds. - 6. Adjust the tone volume control for a reading of **0 dBm**. - 7. Repeat steps 4, 5, and 6 as necessary to obtain a reading of **0 dBm**. NOTE: - 5. When the tone volume control is set to the true Ref. position, the ACP provides the selected WAT output level of **0 dBm**. - 8. To stop BUL, first push the **Enable** button, then push the **Transmitter x** button. Revision B, Errata 1 EHB-7 Issuance 02-07 03/05/02 ### 7.2 ASM Card Alignment Procedure # NOTE: - 1. This alignment requires two people: one in the operations room, and one in the equipment room. - 2. When performing any of the following alignments, the system's output(s) must be disconnected from the telecommunications link and terminated into a 600-ohm load. All audio signal level measurements are taken across the 600-ohm load. - 1. Assemble the following required Equipment: - dB Meter to read the audio signal level - Small jeweler's screwdriver - 600-ohm dummy load with RJ-11 plug attached - 2. Set up the CRS for BUL. No system database is required. - 3. Set the index mark on the **tone volume control** knob to the *Ref.* position as described in section 7.1. - 4. Push the **Transmitter x** and **Enable** buttons in sequence to start BUL on channel x. The buttons are located in the **BACKUP LIVE** block area on the ACP front panel. - 5. Plug the RJ-11 connector (with the 600-ohm load attached) into the RJ-11 jack of **OUT 1** on the ASM of transmitter x (output channel x). - 6. Connect the dB meter across the 600-ohm load. - 7. Push the **Alert Tone 1** button to send a WAT to the **OUT 1** jack of ASM card 1. - 8. Measure and record the signal level in dB across the 600-ohm load. - 9. Using a small jeweler's screwdriver, adjust the transmitter gain control potentiometer through the ASM front panel until a reading of **0 dBm** is obtained across the 600-ohm load. ### NOTE: 3. Table 6 provides equivalent V rms and V p-p values related to dBm (all referenced to 600-ohms) as an aid in referencing readings taken with measurement equipment that may not read directly in dBm. **Table 6.** Voltages vs dBm (into 600-ohm load) | dBm | RMS | P-P | dBm | RMS | P-P | dBm | RMS | P-P | |-----|-------|------|-----|-------|------|-----|--------|-------| | 10 | 2.440 | 6.93 | -4 | 0.480 | 1.35 | -17 | 0.110 | 0.301 | | 9 | 2.183 | 6.17 | -5 | 0.430 | 1.20 | -18 | 0.097 | 0.270 | | 8 | 1.946 | 5.50 | -6 | 0.390 | 1.03 | -19 | 0.087 | 0.240 | | 7 | 1.734 | 4.90 | -7 | 0.345 | 0.96 | -20 | 0.0775 | 0.215 | | 6 | 1.546 | 4.37 | -8 | 0.306 | 0.85 | -21 | 0.690 | 0.194 | | 5 | 1.377 | 3.89 | -9 | 0.275 | 0.76 | -22 | 0.061 | 0.170 | | 4 | 1.228 | 3.47 | -10 | 0.245 | 0.68 | -23 | 0.054 | 0.152 | | 3 | 1.094 | 3.01 | -11 | 0.213 | 0.61 | -24 | 0.048 | 0.135 | | 2 | 0.975 | 2.75 | -12 | 0.192 | 0.54 | -25 | 0.043 | 0.120 | | 1 | 0.869 | 2.46 | -13 | 0.173 | 0.48 | -26 | 0.039 | 0.108 | | 0 | 0.775 | 2.15 | -14 | 0.154 | 0.43 | -27 | 0.034 | 0.096 | | -1 | 0.690 | 1.94 | -15 | 0.138 | 0.38 | -28 | 0.031 | 0.085 | | -2 | 0.610 | 1.70 | -16 | 0.125 | 0.34 | -29 | 0.028 | 0.076 | | -3 | 0.540 | 1.52 | | | | -30 | 0.024 | 0.068 | # NOTE: - 4. The WAT output from the ACP nominally lasts 10 seconds. It is recommended that a second person push the **Alert Tone1** button for a near continuous tone output. This will smooth out the calibration effort and minimize the time required. - 5. Primary (Out1) and secondary (Out2) outputs are two independent outputs. However, the output level of Out1 is affected by approximately 1.5 dB if Out2 is loaded. - 6. During BUL, the VU meter monitors the ACP tone output, not the output of the ASM card. The ACP tone output is sent to the ASM card via the ASC for final output. - 10. Repeat steps 7, 8, and 9 as necessary to obtain a reading of **0 dBm** for the channel under test. - 11. To stop BUL, first push the **Enable** button and then push the **Transmitter x** button. - 12. Repeat steps 1 through 10 to align each of the new ASM cards in the system. - 13. Remember to activate each ASM card output by pushing the respective **Transmitter x** button and then the **Enable** button.